Word Extraction from Table Regions in Document Images

نویسندگان

  • Chang Bu Jeong
  • Sang-Cheol Park
  • Hwa Jeong Son
  • Soo-Hyung Kim
چکیده

This paper describes a method to extract words from table regions in document images. The proposed approach consists of two stages: cell detection and word extraction. In the cell detection module, a table frame is extracted first by analyzing connected components and then intersection points are detected by a method using masks in the table frame. We correct false intersections, and detect the location of the cells within the table. In the word extraction module, a text region in each cell is located by using the connected components information that was obtained during the cell extraction module, and segmented into text lines by using projection profiles. Finally we divide the segmented lines into words using gap clustering and special symbol detection. The method correctly included character components touching the table frame with words, so experimental results show that more than 99% of words were successfully extracted from table regions

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Analysis And Classification Based On Passing Window

In this paper we present Document analysis and classification system to segment and classify contents of Arabic document images. This system includes preprocessing, document segmentation, feature extraction and document classification. A document image is enhanced in the preprocessing by removing noise, binarization, and detecting and correcting image skew. In document segmentation, an algorith...

متن کامل

Automatic Keyword Extraction from Historical Document Images

This paper presents an automatic keyword extraction method from historical document images. The proposed method is language independent because it is purely appearance based, where neither lexical information nor any other statistical language models are required. Moreover, since it does not need word segmentation, it can be applied to Eastern languages where they do not put clear spacing betwe...

متن کامل

Automatic keyword extraction using Latent Dirichlet Allocation topic modeling: Similarity with golden standard and users' evaluation

Purpose: This study investigates the automatic keyword extraction from the table of contents of Persian e-books in the field of science using LDA topic modeling, evaluating their similarity with golden standard, and users' viewpoints of the model keywords. Methodology: This is a mixed text-mining research in which LDA topic modeling is used to extract keywords from the table of contents of sci...

متن کامل

EXTRACTION-BASED TEXT SUMMARIZATION USING FUZZY ANALYSIS

Due to the explosive growth of the world-wide web, automatictext summarization has become an essential tool for web users. In this paperwe present a novel approach for creating text summaries. Using fuzzy logicand word-net, our model extracts the most relevant sentences from an originaldocument. The approach utilizes fuzzy measures and inference on theextracted textual information from the docu...

متن کامل

Connected Component Based Word Spotting on Persian Handwritten image documents

Word spotting is to make searchable unindexed image documents by locating word/words in a doc-ument image, given a query word. This problem is challenging, mainly due to the large numberof word classes with very small inter-class and substantial intra-class distances. In this paper, asegmentation-based word spotting method is presented for multi-writer Persian handwritten doc-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005